A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow

نویسندگان

  • Weishi Liu
  • Hongguo Xu
چکیده

In this work, we examine the stationary one-dimensional classical Poisson-Nernst-Planck (cPNP) model for ionic flow – a singularly perturbed boundary value problem (BVP). For the case of zero permanent charge, we provide a complete answer concerning the existence and uniqueness of the BVP. The analysis relies on a number of ingredients: a geometric singular perturbation framework for a reduction to a singular BVP, a reduction of the singular BVP to a matrix eigenvalue problem, a relation between the matrix eigenvalues and zeros of a meromorphic function, and an application of the Cauchy Argument Principle for identifying zeros of the meromorphic function. Once the zeros of the meromorphic function in a stripe are determined, an explicit solution of the singular BVP is available. It is expected that this work would be useful for studies of other PNP systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversal permanent charge and reversal potential: case studies via classical Poisson-Nernst-Planck models

In this work, we are interested in effects of a simple profile of permanent charges on ionic flows. We determine when a permanent charge produces current reversal. We adopt the classical Poisson-NernstPlanck models of ionic flows for this study. The starting point of our analysis is the recently developed geometric singular perturbation approach for Poisson-Nernst-Planck models. Under the setti...

متن کامل

Poisson-nernst-planck Systems for Ion Flow with Density Functional Theory for Hard-sphere Potential: I-v Relations and Critical Potentials. Part Ii: Numerics

We consider a one-dimensional steady-state Poisson-Nernst-Planck type model for ionic flow through membrane channels. Improving the classical Poisson-Nernst-Planck models where ion species are treated as point charges, this model includes ionic interaction due to finite sizes of ion species modeled by hard sphere potential from the Density Functional Theory. The resulting problem is a singularl...

متن کامل

Solutions to a nonlinear Poisson-Nernst-Planck system in an ionic channel

A limiting one-dimensional Poisson-Nernst-Planck (PNP) equations is considered, when the three-dimensional domain shrinks to a line segment, to describe the flows of positively and negatively charged ions through open ion channel. The new model comprises the usual drift diffusion terms and takes into account for each phase, the bulk velocity defined by (4) including the water bath for ions (see...

متن کامل

A Wasserstein Gradient Flow Approach to Poisson-Nernst-Planck Equations

The Poisson-Nernst-Planck system of equations used to model ionic transport is interpreted as a gradient flow for the Wasserstein distance and a free energy in the space of probability measures with finite second moment. A variational scheme is then set up and is the starting point of the construction of global weak solutions in a unified framework for the cases of both linear and nonlinear dif...

متن کامل

Effects of (Small) Permanent Charge and Channel Geometry on Ionic Flows via Classical Poisson-Nernst-Planck Models

In this work, we examine effects of permanent charges on ionic flows through ion channels via a quasi-one-dimensional classical Poisson-Nernst-Planck (PNP) model. The geometry of the three-dimensional channel is presented in this model to a certain extent, which is crucial for the study in this paper. Two ion species, one positively charged and one negatively charged, are considered with a simp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014